508 research outputs found

    Signatures of β-sheet secondary structures in linear and two-dimensional infrared spectroscopy

    Get PDF
    Using idealized models for parallel and antiparallel β sheets, we calculate the linear and two-dimensional infrared spectra of the amide I vibration as a function of size and secondary structure. The model assumes transition–dipole coupling between the amide I oscillators in the sheet and accounts for the anharmonic nature of these oscillators. Using analytical and numerical methods, we show that the nature of the one-quantum vibrational eigenstates, which govern the linear spectrum, is, to a large extent, determined by the symmetry of the system and the relative magnitude of interstrand interactions. We also find that the eigenstates, in particular their trends with system size, depend sensitively on the secondary structure of the sheet. While in practice these differences may be difficult to distinguish in congested linear spectra, we demonstrate that they give rise to promising markers for secondary structure in the two-dimensional spectra. In particular, distinct differences occur between the spectra of parallel and antiparallel bsheets and between β hairpins and extended β sheets.

    Low-temperature dynamics of weakly localized Frenkel excitons in disordered linar chains

    Get PDF
    We calculate the temperature dependence of the fluorescence Stokes shift and the fluorescence decay time in linear Frenkel exciton systems resulting from the thermal redistribution of exciton population over the band states. The following factors, relevant to common experimental conditions, are accounted for in our kinetic model: (weak) localization of the exciton states by static disorder, coupling of the localized excitons to vibrations in the host medium, a possible non-equilibrium of the subsystem of localized Frenkel excitons on the time scale of the emission process, and different excitation conditions (resonant or non resonant). A Pauli master equation, with microscopically calculated transition rates, is used to describe the redistribution of the exciton population over the manifold of localized exciton states. We find a counterintuitive non-monotonic temperature dependence of the Stokes shift. In addition, we show that depending on experimental conditions, the observed fluorescence decay time may be determined by vibration-induced intra-band relaxation, rather than radiative relaxation to the ground state. The model considered has relevance to a wide variety of materials, such as linear molecular aggregates, conjugated polymers, and polysilanes.Comment: 15 pages, 8 figure

    Localization properties of one-dimensional Frenkel excitons: Gaussian versus Lorentzian diagonal disorder

    Get PDF
    We compare localization properties of one-dimensional Frenkel excitons with Gaussian and Lorentzian uncorrelated diagonal disorder. We focus on the states of the Lifshits tail, which dominate the optical response and low-temperature energy transport in molecular J-aggregates. The absence of exchange narrowing in chains with Lorentzian disorder is shown to manifest itself in the disorder scaling of the localization length distribution. Also, we show that the local exciton level structure of the Lifshits tail differs substantially for these two types of disorder: In addition to the singlets and doublets of localized states near the bare band edge, strongly resembling those found for Gaussian disorder, for Lorentzian disorder two other types of states are found in this energy region as well, namely multiplets of three or four states localized on the same chain segment and isolated states localized on short segments. Finally, below the Lifshits tail, Lorentzian disorder induces strongly localized exciton states, centered around low energy sites, with localization properties that strongly depend on energy. For Gaussian disorder with a magnitude that does not exceed the exciton bandwidth, the likelihood to find such very deep states is exponentially small.Comment: 9 two-column pages, 4 figures, to appear in Phys. Rev.

    Phenomenology of current-skyrmion interactions in thin films with perpendicular magnetic anisotropy

    Full text link
    We study skyrmions in magnetic thin films with structural inversion asymmetry perpendicular to the film plane. We determine the magnetization texture of a single skyrmion and its dependence on the strength of the Dzyaloshinskii-Moriya interaction relative to the magnetostatic energy. Furthermore, we construct a phenomenological model that describes the interaction between the motion of skyrmions and electric currents to lowest order in spin-orbit coupling. We estimate the experimental verifiable velocities for current-driven motion of skyrmion textures based on available results obtained from domain walls dynamics

    Excitons in Molecular Aggregates with L\'evy Disorder: Anomalous Localization and Exchange Broadening of Optical Spectra

    Get PDF
    We predict the existence of exchange broadening of optical lineshapes in disordered molecular aggregates and a nonuniversal disorder scaling of the localization characteristics of the collective electronic excitations (excitons). These phenomena occur for heavy-tailed L\'evy disorder distributions with divergent second moments - distributions that play a role in many branches of physics. Our results sharply contrast with aggregate models commonly analyzed, where the second moment is finite. They bear a relevance for other types of collective excitations as well

    Quantum Diffusion on Molecular Tubes: Universal Scaling of the 1D to 2D Transition

    Get PDF
    The transport properties of disordered systems are known to depend critically on dimensionality. We study the diffusion coefficient of a quantum particle confined to a lattice on the surface of a tube, where it scales between the 1D and 2D limits. It is found that the scaling relation is universal and independent of the disorder and noise parameters, and the essential order parameter is the ratio between the localization length in 2D and the circumference of the tube. Phenomenological and quantitative expressions for transport properties as functions of disorder and noise are obtained and applied to real systems: In the natural chlorosomes found in light-harvesting bacteria the exciton transfer dynamics is predicted to be in the 2D limit, whereas a family of synthetic molecular aggregates is found to be in the homogeneous limit and is independent of dimensionality.Comment: 10 pages, 6 figure

    Response to the Comment on "Excitons in Molecular Aggregates with L\'evy Disorder: Anomalous Localization and Exchange Broadening of Optical Spectra"

    Get PDF
    In previous work, we have predicted novel effects, such as exchange broadening, anomalous scaling of the localization length and a blue shift of the absorption spectrum with increasing disorder strength, for static disorder models described by stable distributions with stability index {\alpha}<1. The main points of the Comment are that the outliers introduced by heavy tails in the disorder distribution (i) do not lead to deviations from the conventional scaling law for the half width at half maximum (HWHM) of the absorption spectrum and (ii) do not lead to non-universality of the distribution of localization lengths. We show below that the findings reported by us in the Letter are correct and that the wrong conclusions of the Comment arise from focusing on small {\sigma} values.Comment: Based on our response submitted to Physical Review Letters on January 20, 2012. We now also take into account the modifications made to the Comment upon resubmission of the Comment. The Reply has been accepted in Physical Review Letter

    Probing quantum-mechanical level repulsion in disordered systems by means of time-resolved selectively-excited resonance fluorescence

    Get PDF
    We argue that the time-resolved spectrum of selectively-excited resonance fluorescence at low temperature provides a tool for probing the quantum-mechanical level repulsion in the Lifshits tail of the electronic density of states in a wide variety of disordered materials. The technique, based on detecting the fast growth of a fluorescence peak that is red-shifted relative to the excitation frequency, is demonstrated explicitly by simulations on linear Frenkel exciton chains.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Let
    • …
    corecore